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ON THE SYMMETRY GROUPS OF DYNAMIC SYSTEMS* 

V.V. KOZLOV 

The existence of vector fields which commute with the vector field of the 
initial system and are defined in the entire phase space is discussed. 
The phase fluxes of these fields are well-known to be symmetry groups of 
a dynamic system, since they map the set of all its solutions into itself. 
Obstacles to the existence of non-trivial symmetry groups are the 
generation of a large number of non-degenerate periodic solutions, and 
the transversal intersection of asymptotic surfaces. The symmetry groups 
of systems of a "normal" type, which play an important part in perturbation 
theory, are examined in detail. The general xesults are applied, in 
particular, to Hamiltonian systems. It is shown that the equations of 
rotation of a heavy asymmetric rigid body with a fixed point do not have 
a non-trivial symmetry group if the centre of mass of the body is not the 
same as the point of suspension. In particular, there is no supplementary 
many-valued analytic integral which is independent of the classicalenergy 
and area integrals. 

1. Symmetry grouFs. Consider the dynamic system given by the differential equation 

dxldt = u (2) (1.1) 

The vector field u that commutes with the field u(i,e.[m,v] = 0, 
field commutator) is called a symmetry field of system (1.1). 

where!,1 is the vector 
The phase flux of the system 

dxldz = u (x) (1.2) 

which is a one-parameter group of mappings g,%, maps a solution of system (1.1) into a sol- 
ution of the system. 

A dynamic system becomes easier to study if it has a symmetry group. By factorizing the 

group g, with respect to the orbits, the order of system (1.1) can be reduced by one. This 
operation can be realized, at least locally, in any sufficiently small neighbourhood of a non- 
singular point of field u. Admittedly, reduction of the order rests constructively on finding 
the orbits (trajectories) of the system of differential Eqs. (1.2). Assume that there is a 
further symmetry field W, and that [a, ~1 = hw. Then the order of system (1.1) can be reduced 
by two. Finally, if the system of n equations has a resolvent symmetry group of dimensionality 
II - 1, then the system can be integrated in quadratures (Lie's theorem /l, 2/f. 

By the rectification theorem, in a small neighbourhood of a non-singular point of the 
vector field v, system (1.1) has an n-dimensional Abelian group of symmetries. Thus the 
existence of a smooth field of symmetries represents an interesting problem either in the 
neighbourhood of equilibrium, or in the entire phase space. 

Let us quote two simple examples of dynamic systems which have non-trivial analytic 
symmetry fields, but do not have variable continuous integrals. 

1). Consider conditionally periodic motion in the n-dimensional torus T”= {q.... ,z, mod2n), 
specified by the system xi*= 06 with constant frequencies "i which are independent over the 
ring of integers. This system is ergodic in T" and therefore has no variable continuous 
integrals. Yet any constant vector field in T" is a symmetry field. 

2) Let D(Z)=&, where all the eigenvalues of the operator A lie in the left (or right) 
half-plane. since the equilibrium z.=O as t-+m (or as t--m) is asymptotically 
stable, the corresponding system (1.1) has no variable first continuous integrals. Yet ~ss:z 
is a symmetry field; it generates the group of extensions zve'r,s~R. 

In a Hamiltonian system the presence of a first integral F implies the presence of a 
symmetry group: the Hamiltonian vector field with Hamiltonian F is a symmetry field. lhis 
remark can be generalized. Let o be a closed l-form in the phase space of a system with 
Eamiltonian N. Locally ,o= dF, so that we can associate with the form (D a 1ocallyHamiltonian 
vector field with Hamilton function F. If E and F are in involution, this fieldisasymmetry 
field of the initial Hamiltonian system. We can call the form o (or the many-valued function 
F) the many-valued integral of the system with Hamiltonian H. 
-- - 
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Let us give an example of a many-valued integral. For this, consider the motion of a 
charged particle over the plane torus TX= {z,ymd zn) in a constant magnetic field. The 
equations of motion 

5.. - ay' = 0, y" + at‘ = 0; OL = const 

have two integrals, linear in the velocity: t'-ay and Y’ + ax, which are many-valued func- 
tions in the phase space Ta x W. 

We consider below the existence of symmetry fields which are defined in the entire phase 

space. Since hv, h = con&, is a trivial symmetry field, we need to introduce the assumption 

that the fields u and v are linearly independent. Note that, if u = h(x)v and [u, VI ss 0, 
then k is a first integral of system (1.1). 

2. Non-degenerate closed trajectories. Let v be an analytic vector field in the 
analyticmanifold M". The periodic trajectory y is called non-degenerate if n-l of its 
multiplicatorsdiffer from unity. Let I? denote the union of all non-degenerate closed 
trajectoriesof system (1.1). We call r a key set if any analytic function in M which vanishes 
in I" is identically zero throughout M. 

Theorem 1. If r is a key set, then any analytic symmetry field u of system (1.1) is 

linearly dependent on v at all points M. If, moreover, v#O, then u = hv, h = const. 

Proof. Let y be a non-degenerate closed trajectory. Then system (1.1) will have no 
other closed trajectories with a similar period in a small neighbourhood of y Ifu is a 

symmetry field, then g,'(y) is a closed trajectory of (l.l), whose period differs little from 
the period of y for small T. Hence gur (y)~ y for all '5, so that the vectors U,V are 
linearly dependent at points of y. This last property holds everywhere in J?. Now let Q be 
any analytic 2-form in M. Since 52 (u, u) is an analytic function in M, which vanishes at 

points of r, then Q (u, v) = 0. We use the following fact: let Q, be a given outer form at 
the point x,cM; there is an analytic differential form 51, in M, which is identical with 

fill when x =x0. Hence we obtain the linear dependence of fields u,u at all points of M. 

If uf 0, then u = h(z)u, where h is an analytic function in M, which is an integral of 

(1.1) (see Par.1). We know that dh = 0 at points of the set r /3/ (Par.64). Since r is 

a key set, then h = const, which it was required to prove. 

As an example, take a compact surface M, and assume that (1.1) is a U-system /4/. We 

know that all the periodic trajectories are hyperbolic (and hence non-degenerate), and that 

the set P is everywhere dense in M /4/. Hence the U-system does not have even non-trivial 

continuous symmetry fields. In particular, a geodesic flux onacompact manifold with negative 

curvature has no many-valued integrals. 

A related example is the special case of the bounded three-body problem when two heavy 

bodies rotate their common centre of mass in an elliptic orbit with non-zero eccentricity, 

while the third body, of negligible mass, always moves in a straight line orthogonal to the 

plane of the heavy body orbits /5/. The extended phase space of this non-autonomous system 

is three-dimensional. From the results of /5/ we see that the set of hyperbolic periodic 

trajectories is a key set. The system therefore has no non-trivial symmetry group and, in 

particular, has no many-valued analytic integral. It was noted in /5/ that no one-valued 

integral exists. We can similarly prove that there is no analytic symmetry group on energy 
surfaces with large negative energy in the case of the plane circular bounded three-body 

problem. Thepreparatory results required are proved in /6/ by methods of symbolic dynamics. 

3, Splitting of asymptotic surfaces. Assume that MS is a three-dimensional analytic 

~mmanifold, and that the analytic vector field v has no equilibrium positions on it. Assume 
that there are two hyperbolic periodic trajectories yiand yn. Denote by 11,' (An-) the stable 
(unstable) asymptotic surface of trajectory rl(Ye). These surfaces are regular and analytic. 

Fig.1 

Theorem 2. Assume that A,+ and An- intersect and are not identical with a set of points 

in M. Then, system (1.1) has only trivial analytic symmetry fields: u = hv, )L = con&. 

The scheme of the proof is as follows. The intersection A,+ n AZ- consists of the 
trajectories of system (1.1) which approach W(ys) without limit as t++Co(t+---su). 
Transformations of the group g, map these doubly asymptotic trajectories into themselves. 
On the doubly asymptotic trajectories, the fields u and u are linearly dependent. Otherwise, 

A,+ and AZ- would intersect along two-dimensional analytic areas, and hence would coincide, 
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since they are regular and analytic. Since the asymptotic surfaces A,+ and h,- oscillate 

(Fig.1) andthe fields u,u are analytic, the fields are linearly dependent at all points of 
M. It only remains to note that, under the assumptions of Theorem 2, system (1.1) has no 
variable analytic integrals in M /7/. 

We apply Theorem 2 to the problem of the rotation of a heavy rigid body about a fixed 
point. We shall regard the problem as a perturbation of the integrable Euler-Poinsot problem. 
The small parameter S is the product of the body weight and the distance from the centre of 
mass to the suspension point. By excluding the group of rotations about the vertical and 
fixing the value of the constant area, we reduce the problem to study of a Hamiltonian 
system with two degrees of freedom. 

Theorem 3. If the body is dynamically asymmetric, the Hamiltonian system with two degrees 
of freedom has, for small non-zero values of e, only a trivial analytic symmetry group. 

Corollary. Under our assumptions, the equations have no many-valued analytic integral 
which is independent of the energy integral. 

This assertion strengthens the well-known result of /8, 9/ on the non-existence of single- 
valued analytic first integrals. 

To prove Theorem 3, we fix a positive value of the energy integral. With e=O, there 
are two periodic motions of the hyperbolic type (constant rotations of the body about the 
central axis of intertia) in the three-dimensional integral manifold. Their stable and un- 
stable asymptotic surfaces are double. It was shown in /lo, 9, ll/ that, for small &PO, 
the surfaces split up, and some of the disturbed asymptotic surfaces always intersect without 
coinciding. Hence Theorem 2 is applicable. 

The asymptotic surfaces often intersect transversally in problems of Hamiltonian mechanics, 
such as the oscillationsof a pendulum with a vibrating point of suspension, Kirchhoff's 
problem on the motion of a rigid body in a fluid, and the problem of four vortices, etc., 
see /7/. Theorem 2 holds in all these cases. It would be interesting to extend Theorem 2 
to the multidimensional case. We need to speak here of the simultaneous existence of several 
symmetry fields, the number of which is the same as the number of degrees of freedom. 

4. Perturbation theory. We consider the existence of a symmetry group for a system 
of differential equations of "normal" form which is often encountered in applications: 

y; = EFj + . . ., xt’=ok+e~k+...; iQf<m, I<k<n (4.1) 

Here, the frequencies wk depend only onthe slow variables y, while x are angular 
variables (the right-hand sides are &c-periodic with'respect to all rk)t and e is a small 
parameter; the dots denote terms of order 2 or higher in e. 

We shall consider the symmetries of (4.1) generated by the system of equations 

y;=YP+eYf+..., r,'=XkO+eXkl+... (4.2) 

The coefficients YjL and Xk" are assumed to be Bn-periodic in the coordinates 21, . . ., 5k. 
In other words, for the field vB we find the symmetries u, which are analytic in a. 

We shall confine ourselves to the "non-degenerate" case, when the following conditions 
hold: 

1) n>m and the rank of the matrix II ,%JaYlII is almost everywhere equal to m; 
2) if Z@l,(y)ak=O With Certain integerS al,, then all the czh = 0. 
For instance, with m=i these conditions certainly hold when the curve Y++o(Y) is 

regular and intersects transversally the resonant surfaces Zmkal,=O (a~ Zn). If m=n, the 
coditions for non-degeneracy reduce to the single condition: almost everywhere det II hd.3~~ II # 0. 

We assume that all the functions encountered below are analytic. 
First we put S = 0 and find all the symmetry fields of the undisturbed integrable 

system. It can be shown that the commutation condition for the phase fluxes of the undisturbed 
systems (4.1) and (4.2) is equivalent to the series of equations 

Lemma 1. If the system is non-degenerate, then Y,"z~0, and the Xr" are independent 
of II, . . ., 5,. 

Proof. We solve Eqs.(4.3), (4.4) by Fourier's method. We put 

Y,O = E 6, (y) &a*r), (a, 2) = Eekzl, 

We then find from (4.3) that (a.~) E,zO. Since the undisturbed system is non-degenerate 
by hypothesis and there are no zero divisors in the ring of analytic functions, then &=O 
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for cr#O. Thus the functions YjO depend Only On ye On then averaging both sides of Eqs. 
(4.4) with respect to z~,...,I,,, we arrive at the relation 

Since rank liao,/ayAl= m< n, by hypothesis, then 

functions Xk' depend only on the slow variables. 

We put 

Fj = Zfaj (Y) @!a.+, Y,' 

From the commutation conditions for the phase 

YOrO. We then find from (4.4) that the 

= xgaj (Y) eica.~) 

fluxes of systems (4.1) and (4.21, we can 

obtain, to a first approximation in E, the equation 

(a, a) g, = (a, XO)far a 6z Z" (4.5) 

Here, X”, fa, ga are vectors with components Xko, fa’, g,‘. Essential use is made of Lemma 

1 when obtaining (4.5). 

We introduce the resonant set K, consisting of all the points Y=Rm for which there 

exist n--l linearly independent vectors a,a', . . ..E Zn such that (a, w (Y)) = (a', 6) (Y)) = 
. . . = 0 and fa (Y) # 0, fur (Y) J; 0, . . . . 

Lenma 2. Assume that, in a bounded open domain DC Rm= {y} the frequency vector o # 0 

and K r, D is a key set. Then, there is an analytic function %, such that X" =%,o. 

For, the vectors X" and o are linearly dependent at points of the set K. Note that, in 

the typical case, Kis everywhere dense in R". 

We replace X" in (4.5) by the vector field Eao and use the inequality (a, 0)f0. Then 

g, = Eofa for all a # 0. We put 

C$ = Z~~'(y)e~(~.~), X,r = ~Yflak(Y)@,x) 

Since systems (4.1) and (4.2) commute, we obtain to a first approximation in e the chain 

of relations 

i (a, 0) Y ak = (a, X0) (c%’ + z q gnj - X $$ faj, aEZ 

Assuming in (4.6) that YEK, Xk" = %,,mk, and using the inequality 0 # 0, we arrive at 

the relation 

B$f&_O 
I 

(4.7) 

We introduce the distribution of (m - I)-dimensional planes generated by the linearly 

independent vectors fa,fa,, . . . at the points YEK. Let q be the vectors at points Y=K 
which are orthogonal to these hyperplanes. The vector field 9 is defined in the "discontinu- 

ous" set K. Let K’ denote the set of points of K at which the vector function 11 is not 

continuous. 

Lemma 3. Assume that K’ n D is a key set. Then go = COllst. 

For, by (4.71, the vector d%,/aY is parallel to v at all points of K. Since the field 

B%l@Y is continuous, it must vanish at points where 11 is discontinuous. 

Lemma 3 is a crude sufficient condition for the function f,, to be constant: if the field 

9 -is continued up to an analytic field throughout R", the corresponding distribution of 

hyperplanes will in general not be integrable. The meaning of condition (4.7) becomes clear 
if we take the problem of whether system (3.1) has a single-valued analytic integral in the 

form of the series 

H = H, + EH~ -j- . . . (4.8) 

The functionsH, and HI satisfy the equations 

+o,=o, B!$F,+ ,+,,=O 
h 1 k 

(4.9) 

It follows from the first equation, using the non-degeneracy condition, that H, depends 

only on the variables y. Putting 

H, = Zh, (y) e@g”) 

we obtain from the second equation of (4.9) the chain of relations 

X F foLj + i (a, m) h, = 0, a E Z” 
I 
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At points of the set K, the function H, satisfies (4.7). If the conditions of Lemma 3 
hold, then w, ~const. It can be shown by induction in the same way that all the H, E const. 
Thus Lemma 3 gives a sufficient condition for system (4.1) to have no variable analytic 
integrals of the type (4.8). 

Theorem 4. Let the conditions of Lemmas 1-3 hold. Then EL, = &, where the function 
F, depends only on e. 

For, by Lemmas l-3, u. = E,,u,, 5, = co&. Hence the vector field we = (ue - &,ve)/s is Like- 
wise an analytic symmetry field. Again from Lemmas l-3, we have W0 = &v,, g, = con&, and 
so on. We arrive as a result at the equation ue = gvS, where 'E = E* -l-E& + * . . . 

5. Application of Hamilton's equations. We consider the Hamiltonian system 

xti' = c3Hlay,, y; = -i3Hl~xh; k = 1, . . ,, n (5.1) 
if = n, (yl, . . ., Y,) + eH, (yl+ . . ., Y,, xX, . . ., 5,) + 0 (e) 

with a Hamiltonian which is analytic and 2n-periodic in X. In this case, non-degeneracy 
means that the Hessian of H, with respect to the variables y is non-zero, while the condition 

WstO is equilvalent to the absence of critical points of the function H,. Comparing (4.1) 
and (5-l), we see that FJ = -@x,/ax,. 

We Fourier-expand the disturbing function 

N, = Zh, (y) t?i@+ X, 

whrchT;~ie ~X;s-ihau,. In the present problem, K is the se; of all points yEKn for 
n---l linearly independent vectors a,ct ,...~Z” such that (a, o (y))== (a', 

w (y))= . . -== 0 and ha fu) # 0, ha, (Y) # 0, . . . - As distinct from the general case, system (4.7) 
here always has a non-trivial solution: it is satisfied by any analytic function of H,. nence 
Theorem 4 Goes not hoId for Hamiltonian systems. 

Let US be a Hamiltonian vector field (5.1). 

Theorem 5. Assume that Y" is a non-critical point of the function H, and that det 
11 82H,/ayajj +=O at this point. Assume also that, in any small neighbourhood U of the point 

YO1 K is a key set. Then, in the domain U xT"cR"xT", we have the equation me = a, (H, 
E) vz, where (f, is an analytic function. 

Proof. By Lemmas 1 and 2, ug = &,v,,, where so is an analytic integral of the undisturbed 
system, which depends only on y. We know 13, 71 that the functions &, and H, are dependent. 
Since there are no critical points of H, in the smallneighbourhood U, we have 50 = @,(H,) 
in this domain, by the implicit function theorem, where m0 is an analytic function, see /7/. 
Consequently, the vector field w, = (u, - CD,, (H)v,)le is again an analytic symmetry field. 
Similarly, ufg = ~~(~~)~~ and so on. As a result we arrive at the equation u" = Q, (H, e) v,, 
where 0=Q,+e0,+... 

According to Foincare /3, 7/, the conditions of Theorem 5 guarantee that there is no 
auxiliary analytic integral which is independent of the energy integral. 
fore strengthens Foincare/'s result under the same assumptions. 

@r theorem there- 
Our theorem is applicable to 

many problems of Hamiltonian mechanics, and in particular, to the plane circular bounded three- 
body problem (compare /3, 7/). 

6. The case of a meagre resonant set. Theorem 5 is not applicable in cases when 
the resonant set K consists of only a finite number of surfaces. Here again, it is sometimes 
possible to prove that there are no non-trivial symmetry groups. 

Take the Hamiltonian system (5.1) with two degrees of freedom, in which H = H, f eH,; 
H, =(Zat,yiy$2 is a positive definite quadratic form with constant coefficients, while the 
disturbing function 

H, = B&#a~X!r ha = con& 

is a trigonometric polynomial. We introduce the finite set M = (u~Za:ha+O}, invariant 
under the involution a--a. We also introduce the scalar product, givenby <&, q> = Caijfirlj* 

Theorem 6. The Hamiltonian system with Hamiltonian Ho + eH, has a non-trivial symmetry 
group if and only if the points of Mare located on CaG.2 straight lines which intersect 
orthogonally (in the metric <1>) at the origin. 

The conditions of Theorem 6 are obviously sufficient: the Hamiltonian system has an 
auxiliary polynomial integral in the momenta of not higher than the second degree. The 
corresponding Hamiltonian field is the required symmetry field. The necessity is proved by 
means of the results of /12/, where a detailed analysis is given of the infinite number Of 
steps of perturbation theory for system with Hamiltonian H, t s&- 

Instead of the laborious formal proof of Theorem 6, we shall consider here a special case 
which demonstrates the obstacles of a dynamic kind to the existence of a non-trivial symmetry 
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group. Let E(M) be the convex hull of the set M, which is a convex polygon. Let a and a' 

be adjacent vertices of E(M), where <a,a'>> 0. Note that, since M is invariant under the 
involution a++ -cc, there will always be two vertices a and a' for which (a, a'> ;> 0. 
Assume also that, for the infinite set of integers m = 0, 1, 2, . ., the components of the 
integer-valued vectors ma + a' are relatively prime. 

It was shown in /12/ that, under these assumptions, pairs of non-degenerate periodic 

solutions are generated on the two-dimensional resonant tori y = yO, xmod 23z,(ma + a', z/> = 

0, Y" # 0 . In accordance with Para.1, the fields ue and ve are linearly dependent on the 

trajectories of these solutions. By the continuity, the fields z+, and u0 are linearly dependent 

on the "generating" periodic solutions which lie on the undisturbed resonant torus y -- y". 

Since the undisturbed system is non-degenerate, the fields u0 and u,, are independent of the 

angular variables 2. Consequently, they are linearly dependent at the point yO. There are such 

points on an infinity of different straight lines <ma + a',~> = 0 which pass through the 

origin. The set of these lines forms a key set. Hence it follows that the vector fields u0 

and v,, are linearly dependent at all points y=R2. The proof can be completed by using the 

arguments of Para.5: if y" # 0 is a point on the limit line (a, y) = 0 and u is a small 

qeighbourhood of it, then we have ue = @(H, E)U~ in the domain U x T2, where @ is an 

analytic function. 

Theorem 6 also holds for Hamiltonian systems with n>2 degrees of freedom, though we 

are speaking here of the existence of n symmetry fields u,r,...,u,*, which are independent 

almost everywhere for e = 0. Note also that the condition of Theorem 6 is the criterion for 

the existence of a supplementary single-valued integral, analytic in E /12/. 

As an example, consider the motion of three particles of unit 

w 

mass in a circle of unit radius, which are mutually elastically 

attrac.ted or repelled. Let Tl, $9 2.9 be the angular coordinates of 

the particles, and Yl, Yz. Y3 be their momenta. The Hamiltonian is 

Q H = ‘i, (y,’ + Y,~ + ~a*) i E cos (21 - ~2) + 

a’ 
E cos (z* - Ia) + e eos (I5 - zl) 

Here, e is a small coefficient of elastic interaction; it is 

negative (positive) in the case of attraction (repulsion). Apart 

from the energy integral, the equations of motion have the momentum 

Fig.2 
integral yI+ Y,+ Y,. We reduce the order of the system by means of 

the canonical transformation 

41 = I1 - z*, qt = z* - IJ, qs = 21 + z* + 13 

Yl ‘PI + PJ, Yt = --PI+ P2 + P.33 Y, = -pz + Ps 

In the new variables p.9, the integral pS is cyclical; we put pa= 0. We write the 

Hamiltonian of the reduced system: 

H = P,’ - ~1~2 + pa2 i E ws q, -t E eos b* + R cos (PI + q*) (6.0 

The convex hull of the set Mis shown in Fig.2. As the vertices of E(M) we take the 
two vectors a = (1,O) and a' = (0, 4). Clearly, the components of the vector ma-la’ are prime 

and (a, a') > 0. Consequently, the system with Hamiltonian (6.1) has no non-trivial analytic 

symmetry fields. In particular, there are no many-valued integrals which are analytic in e 

and independent of the energy integral. A difficulty is the fact that system (6.1) has an 

infinity of different families of non-degenerate long-periodic solutions. 

7. Some generalizations. Assume that the fields u and u satisfy the relation 

Iu, VI = pu + VU (7.1) 

where p and v are constants. In the neighbourhood of a non-singular point of the field u 

we can use a local theorem on the rectification of trajectories and reduce Eqs.tl.2) to the 

form 

dx,ldT = , . . = dxp,ldr = 0, dx,ldr = 1 

If the general solution of system (1.2) is known, this reduction can be realizedexplicitly. 
In the variables x1, . . ..z. the commutation relation (7.1) is equivalent to the series of 

equations 

(7.2) 

(7.3) 

at+iax, = pi, i < n, auntax, = pn + Y 
where ui are the components of the field u. From (7.2) we obtain 

Vi = dlxnviO, i < n; u, = elrxWno - vlp 

where the functions Vi”(t <i < n) are independent of the coordinates z,, We make the t 

replacement dt = ~Xw’s and write the first n - 1 equations of system (l.l), where the 
denotes differentiation with respect to s: 

5/= v*o, . . ., 2& = &, 

ime 

prime 

(7.4) 
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This closed system of differential equations can be regarded as the result of reducing 
theorderof the initial system (1.1). 

AsSertionl. If the general solution of system (7.4) is known, Eq.cl.1) can be integrated 
in quadratures. 

Since v,' is independent of I,,, for the proof we only require to integrate the equation 

&I '=_ Y~-Q?-~X~ + f (7.5) 

where f is a known function of s, see (7.3). By the replacement !J=klXn, we can reduce 
Eq.(7.5) to the form z' = pfz-v, which is easily integrated. The variables zI are thus 
found explicitly_ as functions of s. In order to express the XI in terms of the initial 
variable t, it suffices to take the integral 

t = S ewxd.s 

Assertion 1 is well-known in the case when v = 0 (p can then be any function of 5). If 
[u, VI = p, the phase flux of system (1.2) transforms the trajectories (1.1) into trajectories 
of the same system. The field II can therefore also be regarded as a symmetry field of system 
(1.1). When proving Theorems 1 and 2, we spoke only of the properties of the trajectories 
(and not of the solutions) of system (1.1). 'The theorems therefore also hold in the case of 
generalized symmetries. 

Let us return to Eqs.(4.1) and consider whether there is a field ug (given by Eqs.(4.2)) 
which satisfies the relation ,&, vel = pve + vu=, where p = P@ + P,& + . . . . v = vg + v,e + . . . 
are series in powers of e with constant coefficients. Eqs.(4.3) and (4.4) are replaced by 
the more general equations 

We fix the coordinates y,, . . ..y. and consider in T” = {x,, . . . , x, mod 2~3) the auxiliary 
system of equations dxkl& = mk = con&. We can then write (7.6) in the form 
Since the function Y,” is periodic, it is bounded. 

d (Yj”)/ds = vOY,O. 
Hence, either 1) Yj” 3 0, or 2) vg = 0. 

In the first case, (7.7) takes the form 

d(X,")/ds = v&k'+ ,,&,h. 

Its solution (as a function of s) is cey@ - P~~~/v~,c = con&. If vo# 0, we have c = 0, 
since X,” is bounded. In this case, Xk = -pOok/vO, andthe fields u0 and v0 are therefore 
linearly dependent. 

Consider the second case, when v,, = 0. If we assume "non-degeneracy" (if Xorax I 0, 

ak EZ, then all the ak = 0), it again fbllows from (7.6) thatthefunction YI" isindependent 
of the variables z. On then averaging both sides of (7.7) with respect to 5,. . . ., xnr we 
arrive at the equations 

8~1’,“+p,w~=O, k-:1,. ..,n 
I 
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We introduce the matrix M =I1 aok/@, 1 o)), where w = col(q, ..,, a~,,). If n>m and the 
rank of matrix El is almost everywhere m + 1, then we obtain from (7.8): Y,“=O and r0 = 0 
(compare Para.4). Thus relations (7.7) take the form Z (8X,/8x,) co1 = 0, whence it follows 
that the functions Xx” are independent of xl, . . ..x.. Further, relations (4.5) are replaced 
by the following: 

Ii (a, 0) + v,l g, = li (a, X0) + p1l fa, a E Z” 

The arguments of Para. apply in the case when v is independent of e. Then, VI = 0. If 

Y E K, then (a,o) = 0 and fa+ 0. Consequently, i (a, X") + p1 = 0,. whence we obtain 
simultaneously the equations (a, X”) = 0 and pL1= 0. These relations enable us to extend 
Theorem 4 to the case of the commutation relation (7.1). 

1. 
2. 
3. 
4. 
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STABILIZATION OF THE STEADY-STATE MOTIONS 
OF MECHANICAL SYSTEMS WITH CYCLICAL COORDINATES* 

A.YA. KRASINSKII and V.V. RONZHIN 

i. 

The stabilization of the steady-state motions of holonomic systems with 

cyclical coordinates is considered, in cases when it is not essentially 

required that the system be exponentially stable with respect to all the 

phase variables. It is shown that the stabilization can be simplified by 

applying controls (of the feedback type) to only some of the cyclical 

variables. The control signals applied to the other cyclical variables 

are then used only to preserve the initial value of the momentum. From 

the initial equations, a linear subsystem which includes the controlled 

cyclical variables is isolated, and the methods of general control theory 

are used to construct control signals for it such that it is asymptotically 

stable with respect to the phase variables. Stability with respect to all 

the phase variables of the initial system is established by reducing the 
problem to a special case. When the subsystem has low dimensionality, the 
control coefficients can be found analytically, and when the dimensionality 
is high, they can be found by a computer with standard mathematical soft- 

ware, using the method of Repin and Tret'yakov /l/. The stabilization of 
systems with cyclical coordinates by applying forces with respect to these 
coordinates was first considered in /2/, from the standpoint of Lyapunov's 
second method /3/, and from the standpoint of general control theory /l/. 

The control signals were taken to be cyclical pulses, and asymptotic 
stability with respect to the positional coordinates and the velocities 
was obtained; it was remarked that control by forces applied with respect 
tothe cyclical coordinates is possible. In /4, 5/, the stabilization of 
the steady-state motions of holonomic systems by forces applied with 
respect tothecyclical coordinates was analyzed qualitatively. 

Consider a mechanical system which is constrained by geometrical non-stationary 

*Prikl.Matem.Mekhan.,52,4,542-548,1988 


